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The L,, extremal polynomials in an explicit form with respect to the weights
(1=x)"2 (1 +x)™m=Y2 and (1 —x)™=Y2 (1 +x)~12 for even m are given. Also,
an explicit representation for the Cotes numbers of the corresponding Turan qua-
drature formulas and their asymptotic behavior is provided.  © 1999 Academic Press

1. INTRODUCTION AND MAIN RESULTS

Throughout this paper let m be an even integer, w a weight (function) on
[ —1, 1], and P, the set of polynomials of degree < N. In what follows we
denote by ¢, c¢;,.. the positive constants independent of variables and
indices, unless otherwise indicated; their value may be different at different
occurrences, even in subsequent formulas.

Let

w=A(x):=(1—x)*(1+x)~% o f>—1,
and
v(x) := w2 VD)),

(x) 1= W= D72, n=172)( )
(

X
(x) :=wlm=D2 =2y,

u b

" (1.1)
v,(x) = w12, (m—l)/2)(x)’
W,
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As we know, for each ne N there exists a unique polynomial
P, (w,m; x)=x"+ ---

for which

jl P,(w, m; x)™ w(x)dx= min jl Plx)" w(x)dx;  (1.2)

P=x"+ ... —1
meanwhile, P,(w, m; x) has the zeros x,,, = x.,(w), k=1, 2, ..., n, satisfying
1 =X, > X1, >X0,> -+- >X,,> X, 41 ,= — 1. (1.3)

As P. Turan pointed out in [ 10, p. 46], little is known about P,(w, n1; x)
for m >4, apart from the well-known fact that

P, (v, m; x)=2"""T,(x), (1.4)

where T,(x) stands for the nth Chebyshev polynomial of the first kind. So
he raised the two problems connected to this direction [ 10, p. 73].

Problem 74. Give the minimizing polynomials of (1.2) with m =4 in an
explicit form for weights other than v(x).

Problem 75. Give an asymptotic representation of the minimizing poly-
nomials of (1.2) with m =4, valid on [ —1, 1], for a weight other than v(x).

In fact, we also know (see, say, [6]) that
P, (u,,, m;x)=2""U,x), (L.5)

where U,(x) stands for the nth Chebyshev polynomial of the second kind.
The first aim of the present paper is to give other solutions of these two
problems.

THEOREM 1. Let

:cos[(2n~|— 1)0/2]

V,(cos ) cos(02)

(1.6)

and

:sin[(Zn +1)0/2]

Wcos 0) sin(0)2)
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Then

P,(v,,, m; x)=2""V,(x) (1.8)
and

P, (w,,, m;x)=2""W,(x). (1.9)

Closely related to the extremal problem (1.2) is a Gaussian quadrature
formula. If we rewrite the weight w as

w(x)=(1—x)?(1+x)?u(x), (1.10)

where p and ¢ are nonnegative integers and u(x) is a weight on [ —1, 1],
then according to [2, Theorem 4] Eq.(1.2) admits the Gaussian quad-
rature formula (x, =x,,(x), k=1, 2, .., n),

n+1 M

|| Suxyde="Y 3 dulu p.q) SO0, (L11)

k=0 j=0
which is exact for all feP,,,, ,,, 1, where
m—2, 1<k<n,

we=4p—1, k=0, (112)
qg—1, k=n+1,

and u(u, p, q) := AWty P, @) := Ajn(1t, p, q) are called Cotes numbers.
For simplicity write A;(u):=/4;(u,0,0). For this direction Turan also
posed [ 10, p.47].

Problem 26. Give an explicit formula for A

wmn(U) and determine its
asymptotic behavior as n — oo.

In [5] we gave an answer to this problem. In [6, 7] we also got solu-
tions of the same problem for the cases

m
P=q4=7 w(x)=v(x)

and
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respectively. In general, for each integer r, 0<r<m/2, the extremal
problem (1.2) with w=uv,, admits the Gaussian quadrature formula corre-
sponding to the case

p=0, q=—-—r, w(x)=(14+x)" v(x).

m
2
Of course, particularly interesting are the cases corresponding to r =0 and

r=m/2. The second aim of this paper is to provide answers to the same
problem for the four cases:

p=0, q=% w(x) = vl(x), (1.13)
r=4q=0, W(X) =0,,(X), (1.14)
P=7.  q=0  wx)=u(x), (1.15)
p=q=0, W(x) = wp(x). (1.16)

In order to state these results we introduce the notation (x; = x,,(v,,),
k=1,2,.. n):

11,,,(x) := (14 )2 V,(x)",

(L, 1<k<n,
M= 3, k=n+1,
W14 x)™2 Vi(x)" 1<k<n
1= [7m) m ) . 1.17
e 0= { (a1 k=ni1, D)
' 1T
L) 1= L () i M D) oy 0y (1.18)

g X — X3)"E"

1
bik:zbikm:zbikmn:ZE[Lkm( )71]5:) X0 15"'3n+19 l=0a 19
’ (1.19)

Then we have

THEOREM 2. Let (1.3) be the zeros of V,(x) and let

my i=n,(m—2).
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Then the Gaussian quadrature formula

n+1 my

1
Llf(X)v(X) dx= 3% Apm(v,0,m/2) fP(x) (1.20)

k=1 j=0

holds for all f€P,,, o1, where for each j, 0 < j<my, and for each k,
I<k<n+l,

272 (m —2)! nny,
[m—2)1122n+ 1) de > (121)
)Lmk+l,k,m(va Oa m/z) :0,
;°jkm(va 05 m/2) = /lj, k,m—2(va 09 (m - 2)/2)

+ (mk_ 1)' lmk,k,m(va O’ m/2) bmk—j,k,m—Z

;“mk,k,m(va O! m/Z) =

- , m=4. (1.22)
(j—=1!
Moreover,
(1—x2)72 ,
Tfl, 1<k<n, jeM:={0,2,4,.,m—2},
Ajem(0, 0, m/2) ~ ) 2 (1.23)
W, k=l’l+1, ]=0, 1,...,7,

and

( _x]2€)(j—1)/2

| Zjm(05 0, m/2)| < ¢ I<k<n, j¢M. (1.24)

i 2 ,
THEOREM 3. Let (1.3) be the zeros of V,(x). Then the Gaussian qua-
drature formula

n m-—2

1
| S o) dx= 3T ) SO x0) (1.25)

k=1 j=0

holds for all feP,, _,, where for each j, 0<j<m—2, and for each k,
1<k<n,

m=2 [ 2)! o
o) = T () o a0, 0201 "2 (126)

i=j
Moreover,

(1=x2)7 (1 +x)™? .
j'jkm(vm) ~ £ nj+1 k > _]GM,

(1= X302 (14 x,)""
nit2 >

|A‘jkm(vm)| <c
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THEOREM 4. Let (1.3) be the zeros of W,(x). Then

1 nomy
|| S e de= TS 0.2, 0) O, Py (128)

k=0j=0

and

—2
Z ;“jkm(wm) f(j)(xk)s .fern—l’ (129)
1 =0

where
;“jkm(vam/zaO):(_l)jij,n+1—k,m(va O,m/2), O<]<mk7 O<k<n7
(1.30)
)“jkm(wm)=(_1)j;"j,n+l—k,m(vm)s 0<]<M_27 lgkgn
(1.31)

We introduce the notation f[x7{, .., x/, x] for the divided difference at
the points x;> --- >x, and x, where x] means that the point x, is
repeated j times. Bojanov [1] established the following quadrature for-
mula, which is an extension of a quadrature formula given by Micchelli
and Rivlin [4]:

THEOREM A. Assume that x,=xp,(w), k=1,2,..,n, and for each j,
0<j<m—2, the quadrature formula

1 n
| 70 Pyow ) = % ) S50 (1.32)

holds for all feP,_,. Then the quadrature formula

n m—2

jilf(x) w(x =Y > Camw) fIX], e X1, x4] (1.33)

k=1 =0
holds for all feP,, 4.

The third aim of the present paper is to establish such quadrature
formulas for the weights w=v,, and w=w,,.

THEOREM 5. For n=m/2 —1 we have the quadrature formula (1.33) with
the weight w=v,, and w=w,,, respectively, where for each j, 0 < j<m—2,
and each k, 1 <k <n,
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cjkm( Um)

21’/2—jn+1j! n(l + xk)(m—j)/Z

B (J1)*(2n+1) ’ (1.34)
- 2m/2—jn—l(j+1)!n(m—§3)/2(m_j—3—2l')!(1+xk)i '

[G+DIP Vx5 2Tm—j—3-20117 7

and

cjkm(wm):(_l)jn cj,n+17k,m(vm)' (135)

We give some auxiliary lemmas in the next section and the proofs of the
theorems in the last section.

2. AUXILIARY LEMMAS
To prove our theorems we need several lemmas.

LEmMA 1. For feP,_, we have

[" 0 m e an
st jlm & )
— (J”)2J_lf(x) U(X)dxzmkglf(Xk)’ ]EM, (21)
0, JEM,

where x,=cos[ (2k—1)n/(2n)], k=1,2, .., n.
Proof. For je M, Lemma?2 in [ 1] says

n

|
L2y fixe),

[* 7060 Tote o) de= L
1 (Jj!")n, =,

which, together with its special case when j=0, gives (2.1). For j¢ M the
relation (2.1) can be found, say in [1, p.355]. |

Now we use an idea of the proof of Theorem 4.1 in [9, p. 58] to derive
an extension of that theorem.
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LemMMmA 2. We have

P, (w=® m; x)=2""P (w® V2 m; 2x%2—1) (2.2)
=(=2)""P (w129 p: 1 —2x2),
Poy (W™ m; x) =27 xP, (W™ m=D2) 5 2x% 1) (2.3)

=(=2)""xP (W= D2 1 —2x2),

Proof. We give the proof of (2.2) only; the proof of (2.3) is similar. The
second equality of (2.2) follows from

P,(w(—-),m; —x)=(—1)" P, (w, m; x), (2.4)

which may be directly derived by (1.2). In order to prove the first equality
of (2.2) by means of the characterization theorem of L,, approximation it
is enough to show

1
j P (w12 m; 2x2 —1)" =1 Q(x)(1 —x*)*dx =0, QeP,,_,. (2.5)
-1
Since it is trivial for the odd polynomials Q, it is sufficient to show (2.5)
for the even polynomials Q. In this case we can write Q(x)=r(2x*>—1),
reP,_,. Then by making the change of variable r =2x2—1, we get

1
J P (w2 m; 2x% —1)" =1 O(x)(1 — x*)* dx
1

1
:2_1/2_“J P,(w™ =2 my )y = () w™ V(1) dt =0. |
—1

As usual, we use the notation
P,(w, m; x)

! 1X)= k=1,2,..n
b0V ) = ot X)) (x— (7)) St

LEMMA 3. We have

V,,(2x2—1)=M, (2.6)
x

W (2x% — 1) = Uy,(x), (2.7)

Wi(—=x)=(=1)"V,(x), (2.8)

Xin W) = =Xp i1 tnlV),  k=1,2,..n, (2.9)

LWy —=X) =01 (U5 X), k=1,2,..,n (2.10)
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Proof. Equations (2.6) and (2.7) may be obtained by setting
cos0=2x?>—1 in (1.6) and (1.7), respectively. Equation (2.8) directly
follows from (2.4). Finally, (2.9) and (2.10) may be derived from (2.8). ||

LEMMA 4. Let x;, =x4,(v,,), k=1,2, .., n, and

n+1 n
ag =y ————, i=1,2, .. I<k<n+1.

v:](xv_xk)

v#k

Then
m .
bikm 7 z vkbz v, k,m> l=1>2>-~~s 1<k<l’l+1

I

) _ "
Lkm(x) v=1 xv X’
v#Ek

which implies

Ay =

1 L, (x)]6 D
m(i—1)! { _Lk,n(x)}

X:Xk

Hence applying the Newton—Leibniz rule, it follows from (1.19) that

i
. Z avkbi—v,k,m
v=1

_my ()]0 1 I
i y= lm V_l) |: Lkm(x):| xex, (l_V)' [Lkm(x) ]x:xk
Lo | = (L0119 =0
B Lkm(x) km(x) :| _IT [ km(x) ]x:xk = Ditem- I

x:xk

3. PROOFS OF THEOREMS

3.1. Proof of Theorem 1. Setting o =(m—1)/2 in (2.2) and using (1.5)
and (2.7), we obtain

P (w,,, m;2x>—1)=2" P, (u,,, m; x)=2"" U, (x)=2"" W, (2x*—1),
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which means (1.9). Then by (24), (1.9), and (2.8),

Pn(vm’m; x):(—l)"Pn(Wm,m; _x):(_z)—n w,

n

(—x)=27"V,(x). 1

Remark. Equations (1.8) and (1.9) may also be obtained by setting
a=—1/2 in (2.3).

3.2. Proof of Theorem 5. We note that by (1.8) and (1.32),
Cjkm(vm)

1
=f [277 V(x) ) £ty X) v(x) dx, 0<j<m—2, 1<k<n.
—1

(3.1)

Then by making the change of variable x =2¢>— 1 and applying (2.6),

1
c.km(vm)=2<m+2)/2—f"j V(202 —1)7 £ (0,; 22 — 1) 7 o(2) dt

J
0

1
=2m/2—f"j V(202 — 1) £1(v,; 262 — 1) 7 u(t) dt

—1
=2m/2—1"j 0,3 22— 1) 779 Ty, (1) (1) d.
—1
We distinguish two cases.
Case 1: je M. In this case, by Lemma 1
Cjkm(vm)

1
=2m/2fn[ [* tatop2e =1y 22 ) T (1 () i
—1

1
02 [ L0202 1) 2 Ty (1) 0(1) d
—1
2(j1) mem=7
(j!H2(2n+1)

[l g(gmmI T2 gm— 2 )
:2m/2/n{j ( k ) Ty i1(t) 1 0(2) dt +
—1

2V, (xp (12— 13)
B 2/’/2—jn+lj! a(l + x,)m=)2
N (M2 2n+1)

Case 2: j¢ M. In this case, by Lemma 1 and the formula [3, 3.621-2,
p- 369]

1 ) L ) 2i)!
J xZ(x) dxzj cos? 0 do = (20)! 7 i=0,1,..,
1

N 0 [(2)1]*
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we get

1
D) =272 | a0 20 =) ("I =) Ty (1) (1) dt

m—j—1__ m—j—1
t 1

— 2m/2—jn J‘l

2y e
- n k

— 2m/2 —jn

(j+1)! jl A/ I

[+ DNy 2V () = 17)

_ 2P+ 1) <'"—§3)/2ti,-f m—I=3=20(1) dy
[G+DNP V(xS -1

_2mRein (i) n<m—§3v2 (m—j—3=2i) (1+x;)!

LU Vi) S 2Tm—j—=3=20)1]7

v(t) dt

This proves (1.34).
To prove (1.35) we make the change of variable x = —¢, and use (1.9),
(1.32), (2.8), and (2.10) to get

1

(W) = [ T2 W) 400 ) ) dix

= [ 2T WA=V s =0l — ) e
—1

1

= (=0 [ 270V il 1) di

:(_l)jn Cj,n+1—k,m(vm)~ I

3.3. Proof of Theorem 2. Here we use the idea of [6]. Let k, 1 <k <
n+ 1, be fixed.

First let us prove (1.21), since (1.20) is obvious. To this end we make
Q, . 1(x)=(14+x) V,(x). It is easy to check that

~ _ Hm72,n(x) QnJrl(x)
Sx)= i, m— 2920 4 1(X5) (X — Xxp)

satisfies the interpolatory conditions

SUA%,) =0, Oy ks =0, 1,..,my, v=1,.,n+1
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In fact, it is sufficient to show that
S = 1.
By the Newton—Leibniz rule and (1.17) this is indeed the case:

O,y (X) Q. (x) 10 1
(my) _ m—2,n n+1 — H(mk) =1.
/et {dk,m—Z‘Q;z+l(xk)(x_xk) x=2x; A, m—> i 2.n)

Substituting /'€ P, 1y, mp 1 into (1.20) gives

1 Hm72,n(x) Qn+1(x)

1 e =282 1 () (X — X))

ka,k,m=f o(x)dy, k=1,2,..,n+1. (32)

We distinguish two cases.

Case 1: 1 <k<n. By means of (3.2), (3.1), and (1.34), we have

1 1
/ = V(x)"=2/ ; d
/“mk, k, m dk,m_z(l + xk) J71 n(x) k(vm x) Um(x) X
202, ke m(Um) 2" (m—=2)! n

i, m—2(1 +xg) [(m—=2)1112 2n+ 1) dy >

Case 2: k=n+1. By making the change of variable x=2¢>—1, it
follows from (3.2), (2.6), and (2.1) that

1 ! m—1
Mo = g5y | V0" v ) d
D (m—2)/2 1
= V(262 — 1)1 = 2p(¢) dt
dn+l,m—2Vn(_l)'[—1 ( ) ( )

= : " Jl 2 2—1 T. 2 d
I/n t n X v(t t
dn+l,m—2] n( 1) -1 ( ) g l( ) ( )
2( 22 m 2)'7[;,,(-1)

_ L
_dn+1,m—2 Vn(_l) [(
2" (m —2)! nn,,

[m =212 2n+1)dyi1m—2

m—2)11%(2n+1)

Next let us prove (1.22). By [8, (1.4)] we conclude that

1= o
S(x) bi,k,m72(x_xk)l+]Lk,mfz(x) (3.3)

L
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satisfies the interpolatory conditions
f¥x,)=0,,04, u=0,1,.,m—1, v=1,.,n+1.

Substituting /'€ P, _3),4mpn_» into (20) and in (20) replacing m by m — 2,
we have

n+1

imoa=] S0 o) =+ X o/ D (34

where Ay, = 4;,(v, 0, 7/2).

J
We distinguish two cases.

Case 1:v=k. By (1.17) and (1.18) we have L, ,, _,(x;)=1. Using (3.3)
and (1.19) and applying the Newton—Leibniz rule twice, we obtain

m—1—j

*(m, 1 i+j m,
S :ﬁ Y bikm—al(x—x) +ij,m72(x)]§c=k)xk

i=0
(mp)! ™A LY D(x)

i, k,m—2 . .
R T ]

m—1—j
'") ) (’""l >[Lkm ) 0L L)

i=0

AETIED = 0= b2}

— — M2 (3.5)

Case 2: v#k. Using (3.3) and applying the Newton—Leibniz rule
again, we have

Z lmv, v, mf(m")(x

v#Ek
mp—1—j

Z lmv v, m Z btkm 2[(X xk)l+]Lk (x)];”z)xv

v;ék i=0
1 mp—1—j

| Z btkm 2 z )”m vm[(x X )l+]Lk 72(x):|§cm‘,)xv
J izo v£k
1 m—1—j

' Z btkm 2 z )”mv vm(x —X )l+]L(mV) Z(Xv)' (36)
J' i=0 vtk
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According to (1.17) and (1.18) we see

d my!
(m,) _ v,m—2"""k
Lk,m—z(xv)_dkm_2(xv7xk)mkr V#k (37)

Substituting (1.21) and (3.7) into (3.6) and applying Lemma 4, we obtain

Z lmv, v, mf(mV)(xv)

v#k
2m2(m —2)! wmy! me 1= jb
_j![(mf2)!!]2(2n+l)dk,m_z i; b e m = 2v§k (x, —Xxg) mk_i_j
mk!;“m,k,mmk_l_j
=W 'Zo bi,k,m—2amk—j—i,k
i=
_(mk_ 1)' (mk_J) ;“mk,k,mbmk—j,k,m—Z
- . El
J!

which, coupled with (3.4) and (3.5), gives (1.22).
Finally, let us prove (1.23) and (1.24). By [5, (21)],

) n2[i/2]
™ <o g mmrnse | <ksn (3.8)
k

(1

Meanwhile it is easy to see that

L+x\ 2@
<c
|G )=

Then by the Newton-Leibniz rule,

L[/ 14x\™2 0
bunl =[5 (7)™
2L
I<k<n (3.10)

L<KC————75
= (1 _xi)[(l+1)/2]’
Here we use the relation
(14 xp) "' < cyn*

y (1.6) we obtain

V(x| <c (3.11)

(1—=x0)" (142
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and
Vai=1D=(=1)"12n+1). (3.12)

By (1.8) we have V,(x)=2" P,(v,, 2; x) and hence according to the proof
of [9, Theorem 7.32.1, pp. 163-164] we conclude that |V, (x)| < |V, (—1)].

Thus
A V)
|bi,n+1,m| - H<Vn(—1)> :|x—1

Then by (1.17), (1.21), (3.10), and (3.11) we get, for each k, | <k <n,

<en?. (3.13)

|/1jkm| < |/1j,k,m—2| + C/lmk,k,m|bmk—j,k,m—2|

o(1 — x2)(m=2)/2 p2Lm—j=2)/2]

S aem—2l + 7 (1 = x2)Lom ==

c(l _XIZC)[J'/Z]
Sikm—al + agenaTT-

By induction it follows from (1.21) that

AU
|2jtm | < 2O+ DRI+

Using (1.17), (1.21), (3.12), and (3.13) we have

N Cc
|)"j,n+1,m| < |}“j,n+l,m72| +C/“m,,+1,n+1,m|bm,,+17j,n+1,m72| <n2j+1'

To estimate the lower bounds of 44, we note that by [8, (2.8) and (2.9)]

by >0, jEM; b, ,i1>0, j=0,1, ., ——.

J Jn

Thus by (1.17), (1.21), (1.22), (3.11), and (3.12) we even have

20+ 2)/2j! T

At Z 2 ke m—2 = ke 2 =
Jam s m ST (]!!)2(2n+l)dk’j

o(1—x3)7”?

PYES I 1<k<n, jeM,
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and
272 n
; n m/l n / > j
T FLYRRZ LN 20+ 1) d,
C . m_2
e J=0L.—— 1

3.4. Proof of Theorem 3. Let Ay, eP
satisfy the interpolatory conditions

0<j<m—1, 1<k<n,

mn—1>

AY(x,)=0,, 08, u=0,1,..,m—1, v=1,2, .. n

Inserting /= A, into (1.25) and using (1.20) yield

bt = | 7 Ap(3) 0,x) dx

j A (x)(1+ %)™ p(x) dx

I
M

A0, 0, m/2)[ Au(x)(1 +x)"2])

X=X
i=0

- (m/2)!
A 0, m/2)(1 m2t =i
=S () gt 01 0
This proves (1.26).

With the help of (1.26) the estimations of the upper bounds of 4;,,(v,,)
follow directly from (1.23) and (1.24).

To estimate the lower bounds of 4,,,(v,,) we use an inequality given by
the author [8, (2.1)]:

j"km(w)>ChI lltkm( )>0’ l>]a ia jEM,

J

where  hy=I|x;—x|,  h,=|x,—x, 4, and  hp=max{|x,—x,_4,
|Xe— X 11l}s 2<k <n—1. Clearly, h; ~ (1 —x7)"?/n. Hence by (1.26) and
(1.23) for je M

}'jkm(vm) > Chi_ (m_Z)im—Z, k, m(vm)
= ch™ " Do ke ml0, 0, m/2)(1 + ;)™

(=232 (1 +x)""
Cc nj+1 .

=
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3.5. Proof of Theorem 4. Equations (1.28) and (1.29) are obvious. Now
let us prove (1.31) only, since the proof of (1.30) may be derived in a
similar way.

Let Ay(w,,), A i1 -#(U) EP 1, 0<j<m—1, 1 <k <n, satisfy the
interpolatory conditions:

Aj('l;cl)(wym; xv(Wm)) = A](:uinr 1 7k(vm; xn+17v(vm)) = 6j,u 5kvs

u=0,1,..m—1, v=1,2, .., n
Then by (2.9),

A](':u12+1—k(vm; _xv(wm))

:(—1)” A](':ur2+1—k(vm; xn+1—v(vm)) =(_1)j5j,u 5kv’

u=0,1,...,m—1, v=1,2,..,n,
which means
A W3 X) = (= 1) A i1 (0,5 —X). (3.14)

By making the change of variable x = —1¢, it follows from (1.29), (3.14),
and (1.25) that

1
Fpn) = | A7) w,(x) di

el
= (1 [ il =) w,(x) d

1
:(_I)JJ\ lAj,n+1—k(Um; t) vm([) dt:(_l)J )“j,n+1—k,m(vm)' I
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